일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- separating data(데이터 분리하기)
- 준비
- numpy
- Seaborn
- 응시료
- K 데이터 자격시험
- 시험 일정
- pythonML
- 빅데이터 분석기사
- matplotlib
- 검정수수료
- context manger1
- teen learn
- List Comprehension
Archives
- Today
- Total
재원's 블로그
ml pipeline2 (머신러닝 파이프라인2) 본문
최초 작성일 : 2021-12-24
categories: Python Machine Learning
어제에 이어서 'pipeline 만들기' 실습을 진행하였다.
ML Pipeline 학습 곡선 그리기
데이터 불러오기, 훈련세트 분리, pipeline 설계 등
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score
# from sklearn.tree import DecisionTreeClassifier
# from lightgbm import LGBMClassifier
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
column_name = ['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']
df = pd.read_csv(data_url, names=column_name)
print(df.info())
X = df.loc[:, "radius_mean":].values
y = df.loc[:, "diagnosis"].values
le = LabelEncoder()
y = le.fit_transform(y)
print("종속변수 클래스:", le.classes_)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, stratify = y, random_state=1)
pipe_lr = make_pipeline(StandardScaler(),
PCA(n_components=2),
LogisticRegression(solver = "liblinear", random_state=0))
<실행 화면>
Learning Curve 결괏값 구하기
from sklearn.model_selection import learning_curve
train_sizes, train_scores, test_scores = learning_curve(
estimator = pipe_lr,
X = X_train,
y = y_train,
train_sizes = np.linspace(0.1, 1.0, 10),
cv =10
)
train_mean = np.mean(train_scores, axis =1)
train_std = np.std(train_scores, axis = 1)
test_mean = np.mean(test_scores, axis = 1)
test_std = np.std(test_scores, axis = 1)
Learning Cruve 그래프 작성
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize = (16, 10))
ax.plot(train_sizes,
train_mean,
color = "blue",
marker = "o",
markersize = 10,
label = "training acc.")
ax.fill_between(train_sizes,
train_mean + train_std,
train_mean - train_std,
alpha = 0.15, color = "blue")
ax.plot(train_sizes,
test_mean,
color = "green",
marker = "s",
linestyle = "--",
markersize=10,
label = "testing acc.")
ax.fill_between(train_sizes,
test_mean + test_std,
test_mean - test_std,
alpha = 0.15, color = "yellow")
plt.grid()
plt.xlabel("Number of Training Samples")
plt.ylabel("Accuracy")
plt.legend(loc = "lower right")
plt.ylim([0.8, 1.03])
plt.tight_layout()
plt.show()
<실행 화면>
ML PipeLine 검증 곡선 그리기
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from lightgbm import LGBMClassifier
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
column_name = ['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']
df = pd.read_csv(data_url, names=column_name)
X = df.loc[:, "radius_mean":].values
y = df.loc[:, "diagnosis"].values
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20,
# stratify = y,
random_state=1)
kfold = StratifiedKFold(n_splits = 10, random_state=1, shuffle=True)
pipe_lr = make_pipeline(StandardScaler(),
PCA(n_components=2),
LogisticRegression(solver = "liblinear", penalty = "l2", random_state=1))
param_range = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]
train_scores, test_scores = validation_curve(estimator=pipe_lr,
X = X_train,
y = y_train,
param_name = "logisticregression__C",
param_range = param_range,
cv = kfold)
train_mean = np.mean(train_scores, axis = 1)
train_std = np.std(train_scores, axis = 1)
test_mean = np.mean(test_scores, axis = 1)
test_std = np.std(test_scores, axis = 1)
fig, ax = plt.subplots(figsize = (16, 10))
ax.plot(param_range, train_mean, color = "blue", marker = "o", markersize=5, label = "training accuracy")
ax.fill_between(param_range, train_mean + train_std, train_mean - train_std, alpha = 0.15, color = "blue") # 추정 분산
ax.plot(param_range, test_mean, color = "green", marker = "s", linestyle = "--", markersize=5, label = "Validation accuracy")
ax.fill_between(param_range, test_mean + test_std, test_mean - test_std, alpha = 0.15, color = "green")
plt.grid()
plt.xscale("log")
plt.xlabel("Parameter C")
plt.ylabel("Accuracy")
plt.legend(loc = "lower right")
plt.ylim([0.8, 1.03])
plt.tight_layout()
plt.show()
<실행 화면>
ML 그리드서치를 이용한 설계(PipeLine) 및 하이퍼파라미터(Hyper Paramiter) 튜닝
● 각 모델 ==> 차의 종류.
---> 차량 튜닝 4개 ---> 차량 튜닝 1개 3일 ---> 12일 뒤. (나한테 오려면)
● 튜닝 ==> 성능 업데이트 보정.
● 이론 공부 하기도 싫음. --> 그냥 쓰세요!!
--> 남이 쓰던거 그냥 따라 같이 쓰기
● 이론 공부가 하고 싶으면 이론 공부 병행 필요.
● 파라미터 80개 --> 파라미터 1개 수정 2시간
--> 80개 수정 (160시간 걸림...)
--> 성능이 좋아진다는 보장도 없고
● 결국 시간낭비니 그냥 있는 그래로 써라...
--> 이거는 진짜 우리 수준에서는 그냥 그대로 튜닝하지 말고 그대로 사용해라.
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
# from sklearn.tree import DecisionTreeClassifier
# from lightgbm import LGBMClassifier
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
column_name = ['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']
df = pd.read_csv(data_url, names=column_name)
#print(df.info())
X = df.loc[:, "radius_mean":].values
y = df.loc[:, "diagnosis"].values
le = LabelEncoder()
y = le.fit_transform(y)
#print("종속변수 클래스:", le.classes_)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, stratify = y, random_state=1)
pipe_svc = make_pipeline(StandardScaler(),
PCA(n_components=2),
SVC(random_state=0))
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0,1000.0]
● SVM 파라미터 코드
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from lightgbm import LGBMClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
column_name = ['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']
df = pd.read_csv(data_url, names=column_name)
X = df.loc[:, "radius_mean":].values
y = df.loc[:, "diagnosis"].values
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20,
# stratify = y,
random_state=1)
pipe_svc = make_pipeline(StandardScaler(),
PCA(n_components=2),
SVC(random_state=1))
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{"svc__C": param_range,
"svc__gamma": param_range,
"svc__kernel": ["linear"]}]
gs = GridSearchCV(estimator = pipe_svc,
param_grid = param_grid,
scoring="accuracy",
cv = 10)
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best_params_)
clf = gs.best_estimator_
clf.fit(X_train, y_train)
print("테스트 정확도:", clf.score(X_test, y_test))
<실행 화면>
● Decision Tree
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
column_name = ['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst']
df = pd.read_csv(data_url, names=column_name)
X = df.loc[:, "radius_mean":].values
y = df.loc[:, "diagnosis"].values
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20,
# stratify = y,
random_state=1)
kfold = StratifiedKFold(n_splits = 10, random_state=1, shuffle=True)
pipe_tree = make_pipeline(StandardScaler(),
PCA(n_components=2),
DecisionTreeClassifier(random_state=1))
print(pipe_tree.get_params().keys())
param_grid = [{"decisiontreeclassifier__max_depth": [1, 2, 3, 4, 5, 6, 7, None]}]
gs = GridSearchCV(estimator = pipe_tree,
param_grid = param_grid,
scoring="accuracy",
cv = kfold)
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best_params_)
clf = gs.best_estimator_
clf.fit(X_train, y_train)
print("테스트 정확도:", clf.score(X_test, y_test))
<실행 화면>
'Python Machine Learning' 카테고리의 다른 글
text mainig python (machine learning) (0) | 2023.01.24 |
---|---|
ml pipeline1 (머신러닝 파이프라인1) (0) | 2023.01.23 |
decision tree(결정 나무)에 대해 (0) | 2023.01.21 |
machine learning evaluation index(머신러닝 평가지표) (0) | 2023.01.20 |
teen learn (0) | 2023.01.20 |